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Abstract

Polygenic Risk Scores (PRS) are aggregation of genetic risk factors of specific diseases and have been
successfully used to identify subgroups of individuals who are more susceptible to those diseases.
While several studies have focused on identifying the correct genetic variants to include in PRS, most
existing statistical models focus on the marginal effect of the variants on the phenotypic outcome but
do not account for the effect of gene-gene interactions. Here, we propose a novel calculation of the
risk score that expands beyond marginal effect of individual variants on the phenotypic outcome. The
Multilocus Risk Score (MRS) method effectively selects alternative genotype encodings and captures
epistatic gene-gene interactions by utilizing an efficient implementation of the model-based
Multifactor Dimensionality Reduction technique. On a diverse collection of datasets, MRS outperforms
the standard PRS in the majority of the cases, especially when at least two-way interactions between
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genes are present. Our findings suggest that more precise models that incorporate epistatic
interactions are necessary and will yield greater utility for polygenic risk profiling.

Introduction

As the field of traditional genomics rapidly expands its sequencing technologies and translational
abilities, novel applications of genomic data are starting to arise in addressing disease burden.
Complementing the rapid growth in our understanding of human genetic variation was the
emergence of genome-wide association studies (GWAS) in the early 2000s to identify gene variants
associated with common human diseases. Non-candidate-driven in design, these observational
studies carry out chip array genotyping across population subsamples to subsequently assay for
phenotype signal association via statistical approaches in silico. Measuring averaged allelic effects
across all genomics backgrounds and environmental exposures, GWAS have primarily sought to
discern genetic association with phenotypes of interest by studying single nucleotide polymorphisms
(SNPs) and other DNA variants across the human genome (Bush and Moore, 2012; Hirschhorn and
Daly, 2005; Wang et al., 2005).

In tandem with the movement towards precision medicine, the post-GWAS era strives to bring
relevant population-derived gene variants into individual level metrics actionable in health delivery
settings. While GWAS indeed capture gene variants associated with a phenotype of interest on a
population level, translating such results to personalized individual metrics of risk requires
aggregating contributions of many gene variants in the form of polygenic risk scores (PRS). PRS
provide an ability to explain inherited risk for disease in an individual by representing a weighted sum
aggregate of risk alleles based on measured loci effect contributions derived from GWAS (Chatterjee 
et al., 2016; Torkamani et al., 2018). In quantifying the effect of particular combinations of genetic
SNP variants towards risk prediction, PRS offers a probabilisitic susceptibility value of an individual to
disease. Such genetic risk estimation scores are central to clinical decision-making, serving to
reinforce individual health management in heritable disease detection and early prevention of various
adult-onset conditions. The utility of PRS scores have been demonstrated in previous studies towards
disease risk stratification across leading heritable causes of death in the developed world ( et al., 
2009; Khera et al., 2019, 2018; Maas et al., 2016; Seibert et al., 2018).

Because common PRS method assumes a simplified genetic architecture consisting of independent
weights, understanding interactive relationships among genes and SNPs that associate with disease
outcome remain a challenge. Existing standard multivariate categorical data analysis approaches fall
short in handling such enormous possible genetic interaction combinations with both linear and
nonlinear effects. In this context, more robust and efficient methods towards a polygeneic risk
calculation are necessary in capturing the overlap between context-dependent effects of both rare
and common alleles on human genetic disorder. Herein, we use the terminology gene-gene (GxG)
interactions to indicate any genetic interaction including ones among SNPs that may fall outside of
coding regions.

With respect to better understanding the epistasis across an individual’s genome, various statistical
models have been designed with the intent of capturing high dimensional GxG interactions. The
Multifactor Dimensionality Reduction (MDR) method is one such nonparametric framework that
addresses these challenges and has been extensively applied to detect nonlinear complex GxG
interactions associated with individual disease (Ritchie et al., 2001; Moore and Andrews, 2014). By
isolating a specific pool of genetic factors from all polymorphism and cross-valiating prediction scores
averaged across identified high risk multi-locus genotypes, the original MDR approach is able to
categorize multilocus genotypes into two groups of risk based on a threshold value. While created
with the primary intention towards GxG interaction detection by reducing dimensionality interactively



in inferring genotype encodings, the MDR model has additionally demonstrated applicability as a risk
score calculation model in constructing PRS scores (Dai et al., 2013).

Modifications built on top of the MDR framework have been proposed in order to better capture
multiple significant epistasis models and potential missed interactions owning to limitations of the
original model in the higher dimensions. Model-Based Multifactor Dimensionality Reduction (MB-
MDR) was formulated as a flexible GxG detection framework for both dichotomous and continuous
traits (Mahachie John et al., 2011; Cattaert et al., 2010). Rather than a direct comparison against a
threshold level in the original MDR method, MB-MDR merges multilocus genotypes exhibiting
significant High or Low risk levels through association testing and adds an additional ‘No evidence of
risk’ categorization. In comparison to the standard MDR framework which reveals at most one optimal
epistasis model, the MB-MDR method flexibly weighs multiple models by producing a model list
ranked with respect to their statistical parameters.

In the present work, we aim to reformulate the PRS leveraging the MB-MDR approach to better
capture alternative encodings and epistatic interactions of individual disease risk in a novel Multilocus
Risk Score (MRS). Through the following sections, we briefly review the features of the MDR and MB-
MDR software, describe how our new MRS method evaluates polygenic risk, and compare MRS
profiling performance to the standard PRS method on evidence-based simulated dataset collections.
In observing prediction accuracy results, we demonstrate the improved performance of our multi-
model weighted epistasis framework with inferred genotype encodings over existing PRS methods,
showing great potential for more accurate identification of high risk individuals for a specific complex
disease.

Methods

Multifactor Dimensionality Reduction (MDR) and model-based MDR (MB-MDR)

MDR is a nonparametric method that detects multiple genetic loci associated with a clinical outcome
by reducing the dimension of a genotype dataset through pooling multilocus genotypes into high-risk
and low-risk groups (Ritchie et al., 2001). MDR has been applied to a number of real-world datasets
and sufficiently identified important variant interactions that associated with various diseases 
(Motsinger and Ritchie, 2006). Extended from the original MDR algorithm, MB-MDR was first
introduced in 2009 (Cattaert et al., 2010), and its current implementation efficiently and effectively
detects multiple sets of significant gene-gene interactions in relation to a trait of interest while
efficiently controlling type I error rates via a cross-validation strategy. By merging multi-locus
genotypes exhibiting significant high or low risk based on association testing rather than comparing to
an arbitrary threshold as in MDR, MB-MDR provides a flexible framework to detect and measure
epistasis.

In addition to the test statistic and P values associated with each genotype combination, another
important output of MB-MDR is the HLO matrices. Briefly, in the case of a binary trait, for each
genotype combination, an HLO matrix is a 3 x 3 matrix with each cell containing H (high), L (low) or O
(no evidence), indicating risk of an individual whose genotype pairs fall into that cell (Lishout et al., 
2013). For an example binary outcome problem, a genotype combination  and  will have
an HLO matrix that looks like 



We discuss in the following subsection how these values were utilized in the formulation of the
Multilocus Risk Score (MRS).

From Polygenic Risk Scores (PRS) to Multilocus Risk Scores (MRS)

In this subsection, we quickly review the standard PRS formula then present our modification to this
popular risk score calculation. For both methods, we consider a dataset of  individuals with genomes
of  possible SNPs.

In PRS, for each SNP  of an individual , the PRS score is calculated via a summation across  selected
SNPs as 

where  is the weighted risk contribution of the  SNP derived from the association test
parameters and  represents the number of minor alleles (0, 1, or 2) at the  locus of
individual . Various approaches towards predicting risk of the same disease exist across PRS studies
based on the above equation; models may vary according to the specific statistical model used to
produce the weights  for individual genetic variations, the number of genetic variants considered ,
and the ability of the PRS to generalize to the entire population (Sugrue and Desikan, 2019).

In the MRS framework, we let  denote the number of significant combinations for a specific model
dimension  (e.g.  results in pairs of SNPs). In this study, no significance threshold is imposed at
the SNP combination level and, thus,  reaches its maximum value of  (  choose ). For each
subject  ( ), the -way multilocus risk score is calculated as 

where  is the test statistic of the  genotype combination output from MB-MDR,  is the 
genotype combinations of subject  and  represents the  recoded HLO matrix (1 = High, -1 =
Low, 0 = No evidence). As an example, consider a pair  with  and
corresponding HLO matrix of all O’s except an L in the first cell. Then, the contribution of this pair to a
subject’s risk would be 0 for all subjects except those with genotype 0 at both SNPs. For the latter, the
contribution would be -8.3.

In this study, we consider 1-way and 2-way interactions. We denote by MRS the combined risk score
MRS1 + MRS2. The significance level of each combination of SNPs on a given dataset is obtained by
applying on that dataset the MB-MDR software (Lishout et al., 2013; Cattaert et al., 2010) v.4.4.1. We
will compare the performance of the standard PRS method to the combined risk MRS and also its
components, MRS1 and MRS2, separately.

Mutual information and information gain

For a given simulated data set, we apply entropy-based methods to measure how much information
about the phenotype is due to either marginal effects or the synergistic effects of the variants after
subtracting the marginal effects. A dataset’s amount of main effect  can be measured as the total
of mutual information between each  and the phenotypic class  based on Shannon’s entropy 

 (Shannon, 1948): 



We measure the 2-way interaction information (i.e. degree of synergistic effects of genotypes on the
phenotype) of each dataset by summing the pairwise information gain between all pairs of genetic
attributes. Specifically, if we let  denote the  pair , the total 2-way interaction
gain (i.e. synergistic effects ) is calculated as 

where  measures how much of the phenotypic class  can be explained by the 2-way epistatic
interaction within the genotype combination . We refer the reader to Ref. (Moore and Hu, 2014) for
more details on the calculation of the entropy-based terms.

To prevent potential bias, we compute these values from the training set. However, because the
training and holdout sets were randomly split, the amount of main or interaction effect in both
datasets are expected to be similar.

Simulated data

The primary objective of this data simulation process was to provide a comprehensive set of
reproducible and diverse datasets for the current study. Each dataset was generated in the following
manner. For an individual, each genotype was randomly assigned with 1/2 probability of being
heterozygous (Aa, coded as 1 ), 1/4 probability of being homozygous major (AA, coded as 0 ) and 1/4
probability of being homozygous minor (aa, coded as 2 ). The binary endpoint for the data was
determined using a recently proposed evolutionary-based method for dataset generation called
Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions 
(Moore et al., 2017). This method uses genetic programming to build different mathematical and
logical models resulting in a binary endpoint, such that the objective function called fitness is
maximized. In this study, to arrive at a diverse collection of datasets, we aim to maximize the
difference in predictive performance of all pairs of ten pre-selected classifiers. Details on data
simulation are provided in the README of the study’s analysis repository https://github.com/
lelaboratoire/rethink-prs/.

The final collection has 450 datasets containing 1000 individuals and 10 SNPs with various amount of
epistatic effect on the binary phenotypic outcome. For each simulated dataset, after randomly
splitting the entire data in two smaller sets (80% training and 20% holdout), we built the MRS model
on training data to obtain the  coefficients and the HLO matrix, and then we calculated risk score for
each individual in the holdout set. We assess the performance of the MRS by comparing the area
under the Receiving Operator Characteristic curve (auROC) with that of the standard PRS method on
the holdout set.

Manuscript drafting

This manuscript is collaboratively written using Manubot, a software for writing scholarly documents
via GitHub (Himmelstein et al., 2019). With continuous integration, Manubot automatically updates
the manuscript when its authors approve the changes. As a result, the latest version of this
manuscript is always available for review at https://lelaboratoire.github.io/rethink-prs-ms/.

Availability

Detailed simulation and analysis code needed to reproduce the results in this study is available at 
https://github.com/lelaboratoire/rethink-prs/.
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Results

MRS outperforms standard PRS in the majority of simulated datasets

In 335 out of 450 simulated datasets, MRS produces higher auROC compared to PRS (green lines, Fig. 
1). In 363 datasets where the standard PRS method performs poorly (auROC < 60%), MRS performs
particularly well (auROC > 90%) in 102 datasets. This auROC increase of approximately 50% can be
seen at the second peak in the density of the difference between the auROCs from the two methods
(Fig. right). When MRS yields smaller auROC, the difference is small (3.3% ± 2.8%, purple lines/areas).
Across all datasets, the improvement of MRS over PRS is significant (P < ) according to a
Wilcoxon signed rank test. To assess whether this improvement in performance correlates with the
amount of interaction effects contained in each dataset, in the following section, we untangled the
two components of MRS and test for the correlation between the difference in auROC and two
entropy-based measures, main and interaction effect, of each dataset.
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Figure 1:  MRS produces improved auROC in the majority (335 green lines) of the 450 simulated datasets (each line
represents a dataset). In many datasets, the standard PRS method performs poorly (auROC < 60%) while the new
method yields auROC over 90%. This improvement in performance can be seen at the second peak (~50% auROC
increase) in the density of the difference between the auROCs from the two methods (right).

Assess improvement in performance

We recall that MRS is combined from the 1-way and 2-way interaction risk scores: MRS = MRS1 +
MRS2. Individually, MRS1 and MRS2 both significantly outperformed the standard PRS method (both P
values < ) according to a Wilcoxon signed rank test. As the amount of main effects increases (Fig.
2 left column), MRS1 increasingly performs better than PRS, which is likely because encodings are
inferred (top left). Meanwhile, MRS2’s accuracy remain mostly similar to that of PRS (middle left). On
the other hand, when the amount of interaction effects increases (Fig. 2 right column), MRS1
performs mostly on par to PRS while MRS2 increasingly performs better than PRS. Combining the gain
from both MRS1 and MRS2, MRS’s performance progressively increases compared to the standard
PRS.

All computation of MRS1 and MRS2 on 450 simulated datasets finished in less than 20 minutes on a
desktop with an Intel Xeon W-2104 CPU and 32GB of RAM.
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Figure 2:  Combining 1-way (MRS1) and 2-way (MRS2) risk scores, MRS shows increasing outperformance to standard
PRS as dataset contains more main and interaction effects.

Discussion

We introduce a Multilocus Risk Score (MRS) method to improve the performance of the standard PRS
in disease risk stratification of patient populations. While PRS holds much promise for development of
new precision medicine approaches by identifying high risk individuals who may benefit from
prioritized interventions, one of its current limitations is the model simplicity (Torkamani et al., 2018).
As a first step towards addressing this issue and increasing comprehensiveness of risk profiling
models, in this study, we developed a new applied MRS method from the MB-MDR framework that
enables automatic genotype encodings and takes into account multiple models for detecting GxG
interactions. Utilizing the efficient implementation of MB-MDR, MRS automatically infers the genotype
encodings and simultaneously computes the risk of variant combinations. Through comparing
method performance on a diverse collection of simulated data, we demonstrate the robust polygenic
risk profiling ability of MRS and suggest the importance of flexible, precise methods in better
capturing epistasis behind individual patient risk.

We showed that the MRS method outperformed standard PRS in many of the simulated datasets,
highlighting the importance of genotype encodings and consideration of epistasis. We further
examined the association between this improvement and the amount of two-way epistatic effect
induced in the binary phenotypic outcome. Appropriate phenotype encodings are important for



improving the accuracy when there is a large amount of main effects of the variants on the
phenotypic outcome. Meanwhile, inclusion of epistatic terms significantly increases the accuracy from
PRS, especially when two-way interactions are present in the data. Although we only considered up to
two-way GxG interactions, it is straightforward to incorporate higher order interactions (e.g. three-
way, four-way) into MRS. However, preliminary analyses on the simulated datasets for such higher
order interactions did not show significant improvement from the current MRS (results not shown).
We also recommend estimating the computational expense prior to implementing high order
interactions, especially for larger datasets encountered in practice.

Although MRS captures the improvements of MB-MDR in reporting polygenic risk profiles, there are
three primary limitations. First, MRS has not been applied to real-world data. Although we
compensated the lack of real data with a diverse set of simulated datasets, a future study analyzing
real-world data will prove beneficial to quantify the new MRS model’s utility in practice. Second,
accounting for epistasis, in principle, is largely more computationally expensive compared to
investigating solely main effects. Therefore, even with fast and efficient software, pre-selecting the
variants (e.g. based on specific pathways or prior knowledge) will prove beneficial for accurate MRS
computing when analyzing datasets containing a larger number of variants. Nevertheless, we hope
the promising preliminary results from this study will open the door to future approaches that
encompass both main and interaction effects while improving scalability.

Finally, we caution that a risk score model should be evaluated based on not only sensitivity and
specificity but also with respect to potential clinical efficacy, and any genetic risk should be interpreted
in aggregate with other risk factors. Future works focusing on gene-environment interactions with
time-dependent risk factors will be crucial in order to communicate risk properly for preventive
interventions.

In conclusion, MRS enhances the predictive capacity of current risk profiling model for complex
diseases with polygenic architectures. While there is much work left to do to improve the personal
and clinical utility of general risk profiling framework, we highlight that more comprehensive models
that infer proper genotype encodings and account for epistatic effects greatly improve the prediction
efficiency and affords new opportunities for more accurate clinical prevention.
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